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a b s t r a c t

The second basic plane problem of the dynamics of elastic bodies is considered in the Muskhelishvili
formulation, when the known boundary displacements are replaced by interpolation time polynomials
and the known initial conditions are replaced by polyharmonic functions, which interpolate the initial
conditions in a region with a finite number of interpolation nodes. In this case a solution of the problem,
called here the interpolation solution, is possible. It must satisfy the dynamic equations and interpolate
the boundary displacements and initial displacements and velocities. This solution is constructed in the
form of a polynomial and is reduced to solving a series of boundary-value problems for determining the
coefficients of this polynomial.

© 2009 Elsevier Ltd. All rights reserved.

1. Formulation of the problem

Suppose D is a finite region of the XOY plane, which is a cross section of an elastic cylinder � with generatrices perpendicular to XOY.
We will denote the boundary of D by C. The cylinder is subjected to a plane time-varying deformation, the same for all sections parallel to
the XOY plane, parallel to the same plane. If a = (u, v) is the displacement vector of points of the region D, where

then, provided that there are no mass forces, the dynamic equations for the components of the displacement vector have the form1

(1.1)

The constants � and � are the Lamé coefficients. We formulate the problem of obtaining the displacement vector, the coordinates of
which satisfy Eqs (1.1), when the following boundary values are known

(1.2)

where s is the arc abscissa of the curve C, s ∈ [0, l], at the nodal points tj ∈ [t0, T](j = 0,1,. . .n), the values of the initial velocity at a finite number
of points of the region: V (xk, yk, t0) = (V1

k
, V2

k
) (k = 1, . . . , m) and the values of the initial displacement at a finite number of internal points

of the region: a(xk′ , yk′ , t0) = (a1
k′ , a2

k′ )(k′ = 1, . . . , m′).

2. Interpolation of the boundary displacements

We will initially seek the displacements �u(x, y, t), �v(x, y, t) which satisfy the dynamic equations and boundary displacements, in the
form

(2.1)
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We note immediately that, from boundary conditions (1.2), we can further obtain the values

since the systems

and

with Vandermond determinant as the principal determinant of each system have a unique solution.
We now substitute the components of the displacement vector in the form (2.1) into Eqs (1.1) and equate coefficients for all powers of

t. We obtain a system of equations for the coefficients uk(x,y) and vk(x, y)

where

If we multiply both sides of the second equation of the system by i/2 and add to the corresponding parts of the first equation, multiplied
by 1⁄2 the previous system can be written in the form

(2.2)

Here we have introduced the complex variable z = x + iy, and derivatives with respect to the complex variables will, as usual, be taken to
mean

Note that we have changed from independent variables x and y to the independent variables z = x + iy and z̃ = x − iy, related to x and y
by a linear non-degenerate transformation. (It is easy to verify that z = x + iy and z̃ = x − iy are independent of one another by calculating
∂z/∂z̄ and ∂z̄/∂z.) All further calculations will be carried out in the new variables.

We will solve Eqs (2.2) successively, beginning with k = n, gradually reducing the number k. For k = n, n − 1 we have

where fk(z) is a function analytic in the region D. Separating the real and imaginary parts and taking into account the expression for the
derivative with respect to the complex variable z, we obtain

Consequently,

where gk(z) is a function analytic in D. If we now introduce the notation

we obtain the following representation of the complex plane displacement, like when solving the second basic problem of the plane theory
of elasticity1

The boundary condition
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will be the same as when solving the second basic problem of the plane theory of elasticity.1 If the curve C is specified using a function of the
length of the arc, having continuous derivatives up to the third order, the functions �k(z) and �k(z), analytic in D, which are continuously
extendable together with �′

k(z) to the boundary C, can be reestablished in the region D using the well-known approach described in Ref. 1.
For k ≤ n − 2 the method of solving Eq. (2.2) is practically the same except that an additional known term appears on the right-hand

sides

where fk(z) is a function analytic in the region D. Separating the real and imaginary parts and integrating over z, we obtain

where

(2.3)

Note that �k(z, z̃) is a known function since the quantities uk+2 + ivk+2 have already been obtained. To determine the functions �k(z)
and �k(z), that are analytic in D, we have a boundary condition as when solving the second basic problem of the plane theory of elasticity

After substituting all the coefficients uk(x, y), vk(x, y)(k = 0, 1, . . . , n) we obtain, from formula (2.1), the displacements
�u(x, y, t), �v(x, y, t), which satisfy Eqs (1.1) and the boundary conditions, but which do not satisfy the initial displacements and velocities.

We will show that, by construction, all the functions uk(x,y) and vk(x, y) are polyharmonic functions, and the order of harmonicity
increases by unity on changing from uk(x,y) and vk(x, y) to uk−2(x,y) and vk−2(x, y).

We first note that the functions un(x,y), vn(x, y), un−1(x,y) and vn−1(x, y) are biharmonic in D, since they can be represented in the form
of the real or imaginary parts of functions of the form f1(z) + z̄f2(z), where fj(z), j = 1, 2 are analytic functions.

In fact,

Note also that the analytic coefficients for z̄ in the representations of the functions uj and vj (j = n, n − 1) differ only in sign.
We will consider the action of the additive operator (2.3) on the m-harmonic function. Suppose

(2.4)

It can be shown that
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It is obvious that, when fm−1(z) = −gm-1(z), the coefficients of z̄m+1 of representations ReS[u + iv] and ImS[u + iv] vanish; moreover, the
coefficients of z̄m of the representations of the same functions will differ only in sign.

Hence, the interpolation solution �u(x, y, t), �v(x, y, t) obtained is the ([n/2] + 2)-harmonic function.
Since the solution having the form of a polynomial in powers of t, which takes specified values for values of the variable tj(j = 0,1,. . .,n)

for fixed coordinates x and y of a point lying on the boundary of the region, is an interpolation polynomial, to estimate the components of
the error of the interpolation of the boundary values of the displacement vector r(t) = (r1(t), r2(t)) one can use the corresponding estimate
of the residual term.2 Thus, if the solution of the problem in the classical formulation for a specified boundary point (x,y) is the boundary
displacement vector a(t) = (u(t), v(t)), where u(t) and v(t) are (n + 1)-times differentiable functions, we have

(2.5)

When constructing the interpolation solutions, the boundary displacements

at the (n + 1)-th instant of time, can be calculated accurately and, consequently, if these functions are differentiable, the values of the
functions

(2.6)

when t = tj (j = 0,1,. . .,n) can also be calculated accurately for each value of the arc parameter s ∈ [0,l]. Since, for each value of s = s0, the
functions (2.6) are polynomials in t with known values at the (n + 1)-th node tj, inequalities of the type (2.5) can also be used to estimate
the errors in interpolating the derivatives of the solution along the length of the arc.

As an example we will consider the simplest problem when the region D is the unit circle and the displacements on its boundary are
specified at three instants of time.

Suppose

where � ∈ [0,2�] is the polar angle. This means that, at the initial instant of time, the arc is shifted in the direction of the OY axis, at the
instant corresponding to t = 1, it is uniformly compressed, and at the instant corresponding to t = 2, it is shifted in the direction of the OX
axis.

The interpolation solution of this problem, which satisfies the dynamic equation and the specified boundary displacements, has the
form

3. Interpolation of the initial conditions

In order to interpolate the initial displacements and velocity, we will seek a complex solution of the initial problem in the form

where the displacements �u(x, y, t), �v(x, y, t) are the same as those obtained in the previous section, i.e., they satisfy the dynamic equations
and the interpolation boundary conditions, while the displacements ũ(x, y, t), ṽ(x, y, t) satisfy the dynamic equations (1.1), are equal to
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zero on the boundary of the plate at specified instants of time tj (j = 0, 1, . . ., n), and

(3.1)

We will seek the displacements (ũ, ṽ) in the form

(3.2)

where Pk
j
(x, y)(k = 1, 2, j = 1, . . . , l) are algebraic polynomials in x and y with undetermined real coefficients. We will describe the procedure

for constructing these polynomials.
In order for the displacements (3.2) to satisfy Eqs (1.1), the polynomials Pk

j
(x, y) must satisfy relations of the form (2.2). Hence, when

k = l, l − 1 the following representations hold

(3.3)

where P̃j
k
(z)(j = 1, 2) are algebraic polynomials of the complex variable z = x + iy with arbitrary complex coefficients. When k < l − 1 repre-

sentation (3.3) is supplemented by the term

where S is an operator, defined by the second formula of (2.3).
It is obvious that the coefficient for each additional power t higher than the n-th in representation (3.2) occurs in the solution of the

two additional complex polynomials, i.e., the two sets of arbitrary complex parameters. Hence, the function ũ + iṽ contains two 2l sets of
arbitrary complex parameters or 4l sets of arbitrary real parameters.

By satisfying the condition of zero boundary displacements at the nodal points tj(j = 0,. . .,n) for ũ, ṽ, we obtain an expression for the
boundary values of the coefficients ũk, ṽk in terms of the parameters introduced

(3.4)

where ˛k
p is a fraction, the denominator of which is a Vandermond determinant with powers (from the zeroth to the n-th) of the numbers

tj (j = 0, 1, . . ., n), while the numerator is the same determinant in which columns with the numbers tk
j

are replaced by columns with the

numbers tn+p
j

.
Further, the coefficients ũk(x, y), ṽk(x, y) (k = 0, 1, . . . , n) are found using the scheme for establishing the coefficients

uk(x, y), vk(x, y) (k = 0, 1, . . . , n) from Section 2, beginning with the n-th number. Note that, in view of boundary conditions (3.4),
the polyharmonic functions ũk(x, y), ṽk(x, y) (k = 0, 1, . . . , n) will depend linearly on the undetermined real coefficients contained in the
polynomials P1

p (x, y) and P2
p (x, y)(p = 1, . . . l).

It can be verified that any polynomial P(x, y) is a polyharmonic function, since a natural number n exists, such that

Consequently, according to representations (3.2) the functions ũ(x, y, t0), ṽ(x, y, t0), ∂tũ(x, y, t0), ∂t ṽ(x, y, t0) will also be polyharmonic
functions and will depend linearly on all the undetermined real coefficients, contained in the polynomials Pk

p(x, y)(k = 1, 2, p = 1, . . . , l).
Suppose the number of such coefficients is 2m + 2m′. Then, by satisfying relations (3.1), we obtain a system of 2(m + m′) equations that are
linear in 2(m + m′) unknown real coefficients.

We will illustrate this, supplementing the example considered at the end of Section 2, by specifying a single interpolation node for
the initial displacement and a single interpolation node for the initial velocity. In order to interpolate the initial velocity and the initial
displacement at all points of the unit circle, we will obtain the initial displacement in the form
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By satisfying the zeroth boundary displacements for t = 0, 1, 2 we obtain

It now remains to determine the constants a, b, c and d introduced by satisfying the initial conditions at specified nodal points. The
principal determinant of the corresponding system of the form (3.1) will depend on the Lamé coefficients � and �, and also on the position
of the nodal points. However, noting that quantities of the form �/(	
 + ��) are numerically very small for 	 = 1, 0 and � = 1, 2, 3, we can
conclude that the principal determinant is positive, and so the constants a, b, c and d can be found for any specification of the nodal points.

The problem of the solvability of the system is very complex in the general case since the value of the principal determinant of the
system also depends on the form of the region and the specific form of the polynomials Pk

p(x, y)(k = 1, 2, p = 1, . . . , l).
We will assume that the corresponding system (3.1) is solvable for arbitrary real constants. We obtain interpolation of the initial

conditions using polyharmonic functions. Since each harmonic function occurring in the representation of a polyharmonic function can
be approximated as accurately as desired by a polynomial of two variables, to estimate the interpolation error we can use the well-known
formula for the residual term when interpolating a function of two variables by polynomials.2

The class of polyharmonic functions is a natural generalization of the class of polynomials. Thus, by Stone’s theorem3 any function,
continuous in a bounded and closed region D, can be approximated as accurately as desired in a metric of space C(D) of polyharmonic
functions. According to existing results4 the class of polyharmonic functions in a bounded and closed region is closed with respect to uniform
convergence. Moreover, it was proved in Ref. 4 that a uniformly converging sequence of polyharmonic functions can be differentiated inside
the region an infinite number of times, where the sequences of derivatives will converge uniformly to the corresponding derivative of the
limit function.

4. An estimate of the interpolation error

An estimate of the error when the true solution of the second basic plane problem of the dynamics of elastic bodies is replaced by an
interpolation solution, due to the linearity of the dynamic equations and the initial and boundary conditions, reduces to estimating the
norm of the solution of the problem

with boundary conditions

(rk(s, tj) = 0), k = 1,2, j = 0,1,. . .,n) and initial conditions

We will assume that the initial conditions of the original problem are specified by polyharmonic functions which is natural due to the
possibility, mentioned in the previous section, of approximating continuous functions by polyharmonic functions. As a result of this and
the property of the convergence of the derivatives of polyharmonic functions, mentioned in the previous section, we can assume that hk(x,
y), Vk(x, y), ∂xhk, ∂yhk (k = 1,2) are polyharmonic functions bounded in C(D). We will also assume that
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We will also suppose that the true solution has second derivatives of the components of the displacements with respect to x and
with respect y, continuous up to C, for all t ∈ [t0, T], and that the derivatives with respect to t of the above-mentioned second derivatives
with respect to x and with respect to y are also integrable with a modulus along C. Hence, we can assume that the components of the
stress tensor, obtained on the basis of the displacements (u, v) are functions that are continuous on C, the vector of the normal stresses
�n is a vector function, continuous along C, and its derivative with respect to t is a vector function ∂t�n is integrable with a modulus
along C.

Using the well-known approach in Ref. 1, we will consider the following relation, obtained using Green’s formula

(4.1)

We integrate equality (4.1) over t from t0 to t and we write the integral on the right-hand side of (4.1) in the form

Since the integral on the right-hand side of (4.1) is a linear combination of squares of norms in the space L2(D) of several functions, the
following estimate holds

On the left-hand side of the last inequality and henceforth ||·|| means || · ||L2(D).
Hence, we can estimate the norms of the differences in the components of the stress tensors corresponding to the true and interpolation

solutions of the second basic plane problem of the dynamics of elastic bodies, denoting them by �ij (i,j = 1,2). We obtain

5. A spline-interpolation solution

This method of constructing an interpolation solution can be used to construct a spline-interpolation solution. Here the section [t0,T]
is divided into sections [tj, tj+1]. In each such section we seek a solution which, when (x, y, t) ∈ D × (tj−1, tj), satisfies Eqs (1.1), satisfies the
specified boundary displacements when t = tj+1, and which satisfies the given boundary displacements and velocities on the boundary and
at a finite number of inner points of the region D when t = tj. For j = 0 we use the specified initial conditions on the boundary and at a finite
number of inner points. For j > 0, instead of the initial conditions we use the displacements and velocities on the boundary and at a finite
number of inner points of the region, obtained at the previous stage when t = tj−1.

The solution for each section [tj, tj+1] is most conveniently sought in the form �u + i�v + ũ + iṽ, where

satisfies Eqs (1.1), with the specified boundary displacements when t = tj, tj+1, and the assigned boundary velocities when t = tj. Here, to
determine the boundary values of the coefficients �uk(x, y) and �vk(x, y) (k = 0, 1, 2) we obtain a system, the principal determinant of which
is equal to −(tj+1 − tj)2 (unlike the Vandermond determinant in Section 2).

In turn,
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satisfies Eqs (1.1), the zero boundary displacements when t = tj, tj+1, and the zero velocities when t = tj, and, because of the presence of the
polynomials Pk

p(x, y), it interpolates the displacements and velocities in the region D in accordance with the values specified or obtained at
a finite number of inner nodal points of the region when t = tj.
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